Microscopic equation for growing interfaces in quenched disordered media
نویسندگان
چکیده
منابع مشابه
Microscopic Equation for Growing Interfaces in Quenched Disordered Media
We present the microscopic equation of growing interface with quenched noise for the Tang and Leschhorn model [L. H. Tang and H. Leschhorn, Phys. Rev. A 45, R8309 (1992)]. The evolution equation for the height, the mean height, and the roughness are reached in a simple way. An equation for the interface activity density (or free sites density) as function of time is obtained. The microscopic eq...
متن کاملGrowing interfaces in quenched disordered media
We present the microscopic equation of growing interface with quenched noise for the Tang and Leschhorn model [Phys. Rev. A 45, R8309 (1992)]. The evolution equations for the mean heigth and the roughness are reached in a simple way. Also, an equation for the interface activity density (i.e. interface density of free sites) as function of time is obtained. The microscopic equation allows us to ...
متن کاملA Review of Growing Interfaces in Quenched Disordered Media
We make a review of the two principal models that allows to explain the imbibition of fluid in porous media. These models, that belong to the directed percolation depinning (DPD) universality class, where introduced simultaneously by the Tang and Leschhorn [Phys. Rev A 45, R8309 (1992)] and Buldyrev et al. [Phys. Rev. A 45, R8313 (1992)] and reviewed by Braunstein et al. [J. Phys. A 32, 1801 (1...
متن کاملTheoretical continuous equation derived from the microscopic dynamics for growing interfaces in quenched media
We present an analytical continuous equation for the Tang and Leschhorn model [Phys. Rev. A 45, R8309 (1992)] derived from their microscopic rules using a regularization procedure. As well in this approach, the nonlinear term (nablah)(2) arises naturally from the microscopic dynamics even if the continuous equation is not the Kardar-Parisi-Zhang equation [Phys. Rev. Lett. 56, 889 (1986)] with q...
متن کاملLévy walks and scaling in quenched disordered media.
We study Lévy walks in quenched disordered one-dimensional media, with scatterers spaced according to a long-tailed distribution. By analyzing the scaling relations for the random-walk probability and for the resistivity in the equivalent electric problem, we obtain the asymptotic behavior of the mean-square displacement as a function of the exponent characterizing the scatterers distribution. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1999
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/32/10/002